Cup-shaped copper heat spreader in multi-chip high-power LEDs application.

نویسندگان

  • Ray Hua Horng
  • Hung Lieh Hu
  • Re Ching Lin
  • Li Shen Tang
  • Chen Peng Hsu
  • Sin Liang Ou
چکیده

In this study, cup-shaped copper sheets were developed to improve heat dispassion for high-power light emitting diodes (LEDs) array module (3 × 3, 4 × 4, and 5 × 5) using an electroplating technique. The cup-shaped copper sheets were directly contacted with sapphire to enhance the heat dissipation of the chip itself. The lateral emitting light extraction and heat dissipation of high-power LEDs were enhanced and efficient. The surface temperature was not only decreasing but also uniform for each LED chip with the cup-shaped copper heat spreader adoption. The high thermal transmitting performance of cup-shaped copper heat spreader allows thermal resistance reducing 0.7, 0.6, and 0.7 K/W of 3 × 3, 4 × 4, and 5 × 5 LED array module, respectively. In addition, the light output power was increased of 14, 13, and 12% with 3 × 3, 4 × 4, and 5 × 5 LEDs array module using cup-shaped copper sheet at high current injection. High heat dissipation performance and light extraction were obtained by cup-shaped copper sheet with copper bulk and silver mirror.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Analysis of a high power LED multi-chip Package Module for Electronic Appliances

By using multiple high-power LEDs in products, some difficulties occur in predicting the temperature distribution because of the interaction of heat generated by each single-chip LED in the same module. To determine the heat dissipation of a multi-chip LED module, solid physical models for both single-chip and multi-chip LEDs with cooling fins were constructed. Simulation of the temperature dis...

متن کامل

Thermal analysis of a high power LED multi-chip package module

Some difficulties occur by using multiple high-power LEDs in products to predict the temperature distribution because of the interaction of heat generated by each single-chip LED in the same module. To determine the heat dissipation of a multi-chip LED module, solid physical models for both single-chip and multi-chip LEDs with cooling fins were constructed. Simulation of the temperature distrib...

متن کامل

A practical investigation on nickel plated copper heat spreader with different catalytic activation processes for flip-chip ball grid array packages

This study investigates the effects of two different catalytic activation techniques on the thermal performance of the flip-chip heat spreaders. The two activation techniques studied are thin nickel–copper strike and galvanic initiation. Thermal diffusivity and surface roughness of these heat spreaders were studied using the Nano-flash Apparatus and Infinite Focus Microscopy. High temperature s...

متن کامل

Numerical Analysis of a Miniature-Scale Refrigeration System (MSRS) for Electronics Cooling

This paper presents the numerical analysis of a Miniature-Scale Refrigeration System (MSRS) for electronics cooling. The system consists of a simulated electronic chip attached to a microchannel cold plate evaporator, a compressor, a microchannel condenser, and an expansion device. The system uses R-134a as the refrigerant. A copper block heater is designed to simulate the heat generation of an...

متن کامل

Nickel Plated Copper Heat Spreader Surface Characteristics

Nickel plated copper heat spreader acts as a medium to dissipate heat from silicon die towards heat-sink. Electroless nickel plating requires catalytic activation before the nickel can be deposited onto copper. Different catalytic activation techniques such as galvanic initiation and thin nickel-copper electrodeposition have diverse impact on the thermal performance of the heat spreader. Surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 Suppl 5  شماره 

صفحات  -

تاریخ انتشار 2012